

How to Write a Protocol and Lab Report

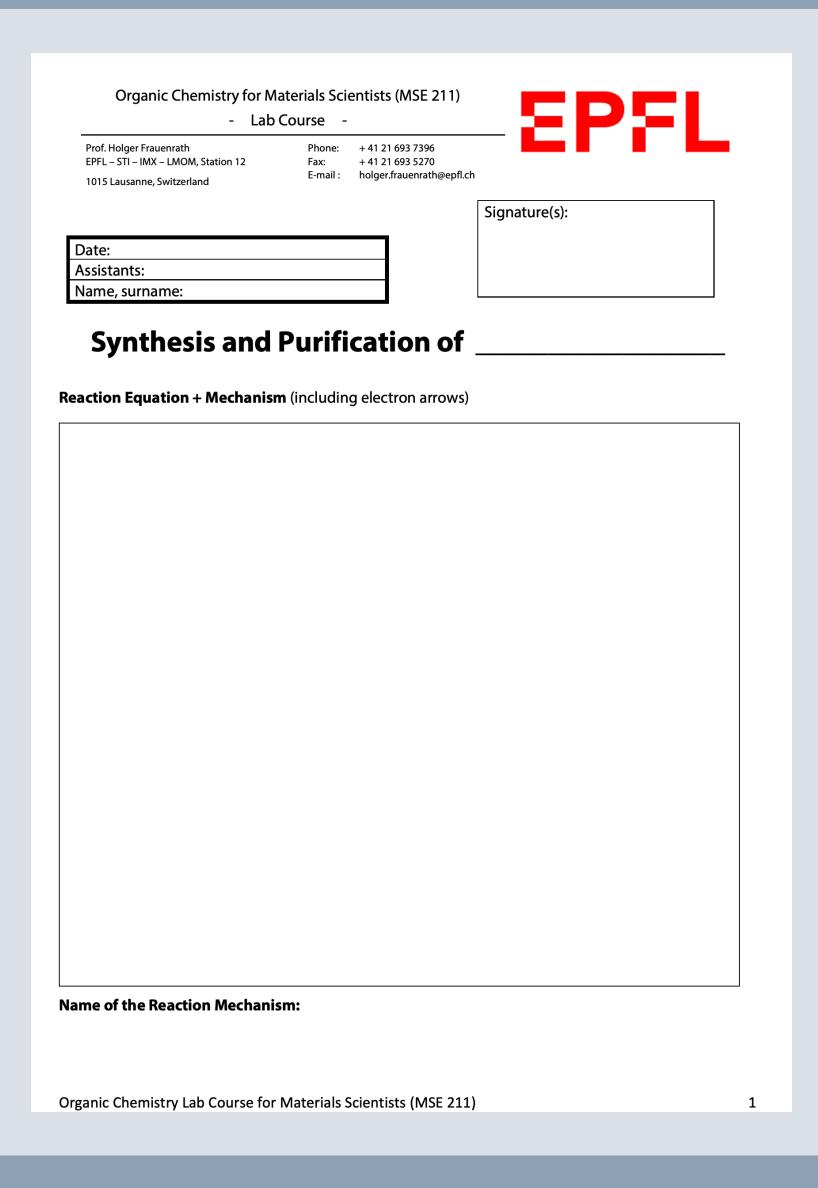
Michael Giffin

École Polytechnique Fédérale de Lausanne (EPFL)
Institute of Materials (IMX)
Laboratory of Macromolecular and Organic Materials (LMOM)

EPFL — STI — IMX — LMOM Building MXG 038, Station 12 1015 Lausanne, Switzerland

Michael.giffin@epfl.ch

The Report


- 4 pages A4 (available on Moodle)
- You must only complete the document with PEN (H and P phrases may be typed)
- 1st and 2nd pages: Must be completed **BEFORE** you being the experiment: mechanism, quantities and H and P phrases
- 3rd page: Introduction, experimental procedure AND observations
- 4th page: Results, analysis and conclusion; any comments by assistants

Reaction Mechanism and

Balanced Equation: Can be written (C_2H_5O) or drawn, but you must also show the mechanism of reaction.

Name the reaction mechanism

DO NOT FORGET YOUR NAME

Chemical Hazards and Quantities

Chemical products

Molar mass: you can search on the internet or calculate them

Moles, masses, volumes: calculate the amount required

Security symbols: corrosive, toxic, dangerous for the environment, etc.

Phrases H and P: search the compound, find an SDS (FDS in French) from a supplier. Write ALL OF THEM.

This site lists all the phrases: https://www.oc-praktikum.de/nop/en/articles/pdf/
HPPhrases_en.pdf

Quantities and Safety

Compound Name	Molar Mass (g.mol ⁻¹)	Mas (g, n	s/Volume, nL)	Hazardous Symbol	Phrases H/P (n°)
Phrases H:			Phrases P		

Organic Chemistry Lab Course for Materials Scientists (MSE 211)

Introduction and Experimental

Introduction: Purpose of the experiment, mention the type of experiment perhaps

Do not just copy the protocol!!

What to find:

- Which glassware is used for a reaction (main container, volume)
- Which reagents are used
- In which order the reagents are added
- At what is the temperature of the reaction
- Stirring?
- The reaction time (not necessarily the one indicated in the protocol)
- How does one end the reaction (quenching)?
- Describe the filtration steps and wash / extractions needed (workup) (if applicable)
- Purification of the final product
- Performance of the reaction (color change, gas generated?)
- Appearance and color of the product

ntroduction			
xperimental Proc	edure and Observation	ns	

Results, Analysis, Conclusion

- Complete the results table
- Analysis
- Melting point
- NMR (list signals, coupling constants, and assign peaks)
- Mass Spectrometry (identify fragments)
- UV-Vis (lambda max, extinction coefficient)
- Answer Questions from the protocol here.

 Conclude how the experiment went (purity of product, yield, major issues during synthesis, type of reaction)

Theor. Mass (g)	Actual Mass (g)	Yield (%)	Melting Point (°C)
alveis (Molting Point NI	MR, Mass Spectrometry,	I Wyis spectrum)	
arysis (Meiting Font, Ni	wit, mass spectrometry,	ov, vis spectium,	
nclusion			

Don't forget your names!

Balanced Equation, with the mechanism!

Organic Chemistry for Materials Scientists (MSE 211)

- Lab Course -

Prof. Holger Frauentath

EPFL - STI - IMX - LMOM, Station 12

1015 Lausanne, Switzerland

Phone: +41 21 693 7396

Fax: +41 21 693 5270

E-mail: holger.frauenrath@epfl.ch

Date:

Assistants: (names of assistants in your lab)

Name, <u>surname:</u> DUPONT, Jean-Pierre

Name, surname: MARTIN, Olivier

N°: (reaction number)

Signature(s):

Synthesis and Purification of hippuric acid

Reaction Equation + Mechanism (including electron arrows)

Strong base (NaOH) picks up the proton from the NH2+, water is released.

Name of the Reaction Mechanism: Addition-elimination, amidation

Masses, volumes, and mole quantities

Remember to look up the SDS!

Quantities and Safety

Compound Name	Molar Mass (g.mol ⁻¹)	Mass/Volume, (g, mL)	Hazardous Symbol	Phrases H/P (n°)
Benzoyl chloride	140.57	33mmol, 4.6 g, 3.8 mL	Toxic and corrosive	<u>H</u> : 302, 312, 314, 317, 331 P: 280, 301 + 312 + 330, 301 + 330 + 331, 303 + 361 + 353, 304 + 340 + 311, 305 + 351 + 338 + 310
Glycine	75.07	33mmol, 2.5g		NONE
Sodium hydroxide	40.0	Excess, 25 mL (10%)	Corrosive	H: 290, 314; P: 260, 280, 301 + 330 + 331, 303 + 361 + 353, 305 + 351 + 338
Hydrochloric acid	36.5	Drops (2M)	Corrosive	H: 290, 314, 315, 319, 335

Phrases H:

290: May be corrosive to metals.

302 + 312: harmful if swallowed or in contact with skin.

314: Causes severe skin burns and eye damage.

315: Causes skin irritation.

317: May cause an allergic skin reaction.

319: Causes serious eye irritation.

331: Toxic if inhaled.

335: May cause respiratory irritation.

Phrases P:

260: Do not breathe dust or mist.

280: Wear protective gloves/ protective clothing/ eye protection/ face

protection.

301 + 312 + 330: IF SWALLOWED: Call a

POISON CENTER/doctor if you feel

unwell. Rinse mouth.

301 + 330 + 331: IF SWALLOWED: Rinse mouth.

Do NOT induce vomiting.

303 + 361 + 353: IF ON SKIN (or hair): Take off

immediately all contaminated

clothing. Rinse skin with water.

304 + 340 + 311: IF INHALED: Remove person

to fresh air and keep comfortable

for breathing. Call a POISON CENTER/doctor.

305 + 351 + 338 + 310: IF IN EYES: Rinse

cautiously with water for several minutes. Remove contact lenses, if present and easy to

do. Continue

rinsing. Immediately call a POISON

CENTER/doctor.

305 + 351 + 338: IF IN EYES: Rinse cautiously

with water for several minutes.

Remove contact lenses, if present and easy to

do. Continue

rinsing.

Always write in the passive, and past tense.

You are describing what has been done in the general sense.

Mention how you analyzed products (TLC, Melting point, etc)

Introduction

The purpose of this laboratory experiment is to synthetize hippuric acid by an amidation reaction. This reaction takes place between benzoyl chloride and glycine in alkaline medium. The product precipitates from the reaction mixture and is then purified by recrystallization from water. Analysis of the melting point allows determination of the relative purity of hippuric acid.

Experimental Procedure and Observations

In a three necked round bottom flask equipped with a thermometer and condenser, glycine (2.5 g, 33 mmol) was dissolved portion wise in 10% NaOH (25 mL) under vigorous stirring. After complete dissolution of glycine, benzoyl chloride (3.8 mL, 33 mmol) was added dropwise via a dropping funnel. The progress of the reaction was followed by temperature evolution. After complete addition, the temperature increased rapidly to 45°C and then decreased slowly to room temperature. Pieces of ice were added to quench the reaction. Then, the pH of the solution was adjusted to pH = 1-2 (pH paper test) by addition of hydrochloric acid (2 M). A white precipitate formed that was filtered on a Büchner funnel and finally washed with cold water. The crude product (7.4 g, R = 116 %) was purified by recrystallization from water (100mL). After filtration on a Büchner funnel and drying in an oven (100°C), the melting range of the asobtained colourless crystals (4.3 g, R = 82 %) was determined (MP = 186-188 °C).

Results, Analysis (and questions), and conclusions

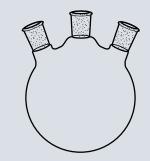
Remember to ask questions, We are here to help!

Rॡults

Theor. Mass (g)	Actual Mass (g)	Yield (%)	Melting Point (°C)
5.9 g	4.3 g	73 %	186-188°C

Analysis (Melting Point, NMR, Mass Spectrometry, UV/vis spectrum)

The melting point of the final product was determined by measuring three
samples. The melting range was 186-188 °C (literature: 187-188 C°), thus the
target compound being of sufficient purity. The NMR showed peaks at XX and YY ppm, which
corresponded well to the expected ranges for these protons.


Conclusion

Hippuric acid was successfully synthesized by an <u>amidation</u> reaction of benzoyl chloride with glycine. The pure target was obtained by recrystallization in good yield of 73%. The decent purity was confirmed by melting point measurement (186-188 °C) and ¹H-NMR analysis.

Verrerie/Glassware

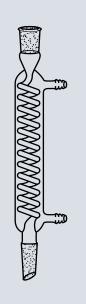
Round bottom flasks Ballons à fond rond

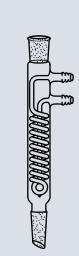
Three neck round bottom flask

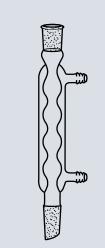
Tricol

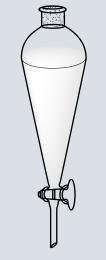
Two neck round bottom flask

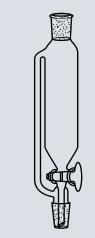
Bicol




Single neck round


Ballon

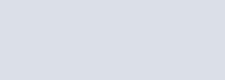


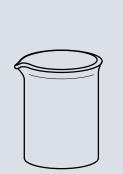


Separating funnel

Ampoule à décanter

Dropping funnel Ampoule à addition isobare

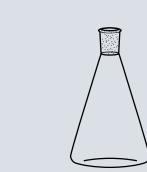



Funnels

Büchner funnel **Funnel**


Unnnnu

Büchner **Entonnoir**



Beaker

Volumetric Graduated flask

Erlenmeyer Filtering flask

column

Bécher ou colonne graduée

Fiole jaugée Erlenmeyer

Fiole à vide

Frit

Fritté

Reminders for the lab

- Have your lab coat (or have arranged with your class rep to receive it when you arrive the first day)
- Arrive PROMPTLY at 8:00 to the lab, with the prelab completed
- Wear long pants and close-toed shoes
- Be aware of the hazards you are dealing with each day
- There are lockers, but you must bring your own lock if you want to use them